
(C) 2015 Marcel Graf

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT — Virtualization

Academic year 2015/16

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Virtualization
Introduction

■Virtualization in computer science: a virtualized system is a mapping of its interface, and all
resources visible through that interface, to the interface and resources of a real system.

■Often several virtualized systems are mapped to the same real system.

■Examples

■Virtual memory managed by the operating system

■Virtual LANs offered by network switches

■Programming language runtimes: Java Virtual Machine, .NET Common Language Runtime

■Hardware virtualization

■Storage virtualization

■Network virtualization

2

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Virtualization
Virtualization vs. Emulation

■Emulation: the process of implementing the interface and
functionality of one system on a system having a different interface
and functionality.

■Examples: Game console emulator, terminal emulator, microprocessor

emulator

■Virtualization can be seen as a special case of Emulation

■ In virtualization only a small part of the functionality is emulated, most of
it is provided by the original component.

■Many virtualization techniques were derived from emulation techniques.

■There are three basic emulation approaches:

■ Interpretation

■ Emulator interprets one instruction at a time.

■Static binary translation

■ Emulator translates a block of instructions at a time and optimizes it for
repeated executions.

■Dynamic binary translation

■ Hybrid approach which combines interpretation with static binary translation.

3

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Basic approach

4

Hypervisor

CPU memory network
adapter

hard disk

Operating
System

App
1

Virtual machine 1

Operating
System

App
1

Virtual machine 2

Hardware

virtual
devices

App
2

App
3

App
2

App
3

Computer with hardware virtualization
(type 1, bare-metal hypervisor)

physical
devices

Operating System

CPU memory network
adapter

hard disk

Application 1

Hardware

Application 2 Application 3

Computer without hardware virtualization

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Hypervisors

■When the concept of virtualization is applied to an entire computer one speaks of hardware
virtualization or platform virtualization.

■ The virtualized computer is called Virtual Machine (VM).

■A VM is implemented by adding a layer of software to a real machine so as to support the
desired VM's architecture.

■ This layer of software is often referred to as virtual machine monitor (VMM).

■Early VMMs were implemented in firmware.

■ Today, VMMs are often implemented as co-designed firmware-software layer, referred to as the

hypervisor.

5

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Basic approach

■User of the virtualized system: The
operating system and the
applications running on it

■ Interface of virtualized system: CPU

instruction set, memory and and
controller registers

■Accessible resources of virtualized

system: CPU, MMU, buses, I/O
devices, ...

6

Drivers Memory
manager Scheduler

Operating System

Libraries

Application Programs

System interconnect (bus)
Memory

translation

Controllers Controllers

I/O devices and
Networking Main memory

Software

Hardware

Execution hardware (CPU)

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Properties

■Binary compatibility
■ The guest behaves like a real machine to the operating system and the applications running within.

■ Interposition
■All guest actions go through the virtualizing software which can inspect, modify, and deny operations.

■ Isolation
■Programs running in one VM cannot access data in another VM.

■ Software isolation

■ Fault isolation

■A VM with high load cannot affect the performance of another VM.

■ Performance isolation (accomplished through scheduling and resource allocation)

■Encapsulation
■All VM state can be captured into a file: the VM image

■ The VM can be manipulated like any other file: transferred, duplicated, deleted

■Complexity is proportional to virtual HW model and independent of guest software configuration

7

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
History

■ In 1966, the IBM System/360 Model 67 was the first computer offering virtual machines, on
which several operating systems could run.

■ For many decades IBM's mainframes were the only computers to support virtualization.

■ In 1998, VMware figured out how to virtualize the x86 platform, once thought to be impossible.

■Pure software solution, using very clever techniques.

■ In 2006, both Intel and AMD introduced hardware virtualization support in their processors.

■Simpler virtualization software, but little speed benefit.

■ Later processor models added memory and network virtualization support.

8

VMware Understanding Full Virtualization, Paravirtualization, and Hardware Assist

Introduction 1

Figure 1 – Summary timeline of x86 virtualization technologies

Introduction
In 1998, VMware figured out how to virtualize the x86 platform, once thought to be impossible,
and created the market for x86 virtualization. The solution was a combination of binary translation
and direct execution on the processor that allowed multiple guest OSes to run in full isolation on
the same computer with readily affordable virtualization overhead.

The savings that tens of thousands of companies have generated from the deployment of this
technology is further driving the rapid adoption of virtualized computing from the desktop to the
data center. As new vendors enter the space and attempt to differentiate their products, many are
creating confusion with their marketing claims and terminology. For example, while hardware
assist is a valuable technique that will mature and expand the envelope of workloads that can be
virtualized, paravirtualization is not an entirely new technology that offers an “order of
magnitude” greater performance.

While this is a complex and rapidly evolving space, the technologies employed can be readily
explained to help companies understand their options and choose a path forward. This white
paper attempts to clarify the various techniques used to virtualize x86 hardware, the strengths
and weaknesses of each, and VMware’s community approach to develop and employ the most
effective of the emerging virtualization techniques. Figure 1 provides a summary timeline of x86
virtualization technologies from VMware’s binary translation to the recent application of kernel
paravirtualization and hardware-assisted virtualization.

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Uses

■Where does hardware virtualization play an important role today?

■Server virtualization: Inside a company, one physical server is able to run several different

applications, where each application requires a different environment (operating system, database,
middleware, ...).

■ VMware ESXi, Citrix XenServer, Microsoft Windows Server 2008 Hyper-V, Red Hat Enteprise Virtualization, ...

■Cloud computing: Using hardware virtualization a cloud service provider is able to run several virtual
machines on a single server and rent them by the hour to different customers.

■ Amazon Web Services, Microsoft Azure, Google Cloud Services, OpenStack, CloudStack, VMware

vSphere, ...

■Development VMs: An application developer recreates on her personal computer the server
environment in which the application will run, inside a virtual machine.

■ VMware Workstation / Fusion, Oracle VM VirtualBox, Parallels Desktop, Vagrant, ...

■Desktop virtualization: The "desktop", that is the applications an employee uses every day, do not
run on the employee's personal computer but on a server in the company's data center and are
centrally managed. The personal computer only provides the display.

■ Citrix XenServer, Microsoft Windows Server 2008 Hyper-V, Red Hat Enterprise Virtualization, VMware

vSphere, ...

9

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Server virtualization — Benefits

■Why does it make sense for a company to use virtualization on their servers?

■Multiple secure environments

■ A VM provides a sandbox that isolates one system environment from other environments

■ Failure isolation
■ Virtualization helps isolate the effects of a failure to the VM where the failure occurred

■Mixed-OS environment
■ A single hardware platform can support multiple operating systems concurrently

■Better system utilization
■ A virtualized system can be (dynamically or statically) re-configured for changing needs

■Reduced energy costs
■ Most non-virtualized servers have low utilization rates. Consolidation on a single server increases utilization.

10

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Server virtualization — Benefits

11

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Development VMs

■Developers often need to
re-create the environment in
which their code will run (for
example a PHP web server)
on their local workstation.

■A Virtual Machine is a good

way to create this
environment without
interfering with the
workstation's software.

■ In this case the hypervisor

runs on top of the
workstation's operating
system (type 2 hypervisor).

■Popular products:

■VirtualBox

■VMware workstation

12

CPU memory network
adapter

hard disk

Hardware

Computer with hardware virtualization
(type 2, hosted hypervisor)

Operating
System

App
1

App
2

App
3

Virtual machine 1

Hypervisor

Operating
System

App
1

Virtual machine 2

App
2

App
3

Operating System

Application 1 Application 2

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Virtualization techniques

■There are three basic virtualization techniques

■ Full virtualization

■Para-virtualization

■Hardware-assisted virtualization

13

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Full virtualization

■The guest OS is not aware it is running on a
virtualized platform.

■Virtualization uses combination of binary

translation (for privileged instructions in the OS)
and direct execution (for applications)

■Performance may suffer from binary translation

■Offers best isolation and security for virtual
machines.

14

VMware Understanding Full Virtualization, Paravirtualization, and Hardware Assist

CPU Virtualization 4

Figure 5 – The binary translation
approach to x86 virtualization

Technique 1 – Full Virtualization using Binary Translation
VMware can virtualize any x86 operating system using a
combination of binary translation and direct execution
techniques. This approach, depicted in Figure 5,
translates kernel code to replace nonvirtualizable
instructions with new sequences of instructions that
have the intended effect on the virtual hardware.
Meanwhile, user level code is directly executed on the
processor for high performance virtualization. Each
virtual machine monitor provides each Virtual Machine
with all the services of the physical system, including a
virtual BIOS, virtual devices and virtualized memory
management.

This combination of binary translation and direct
execution provides Full Virtualization as the guest OS is
fully abstracted (completely decoupled) from the
underlying hardware by the virtualization layer. The guest OS is not aware it is being virtualized
and requires no modification. Full virtualization is the only option that requires no hardware assist
or operating system assist to virtualize sensitive and privileged instructions. The hypervisor
translates all operating system instructions on the fly and caches the results for future use, while
user level instructions run unmodified at native speed.

Full virtualization offers the best isolation and security for virtual machines, and simplifies
migration and portability as the same guest OS instance can run virtualized or on native
hardware. VMware’s virtualization products and Microsoft Virtual Server are examples of full
virtualization.

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Para-virtualization

■The guest OS is modified and cooperates with
the hypervisor.

■Guest OS is often Open Source software, for

example Linux

■ Less need for binary translation

■Opportunities for optimization

■Better performance

■Does not work with commercial off-the-shelf

OSes

15

VMware Understanding Full Virtualization, Paravirtualization, and Hardware Assist

CPU Virtualization 5

Figure 6 – The Paravirtualization approach to x86
Virtualization

Technique 2 – OS Assisted Virtualization or Paravirtualization
“Para-“ is an English affix of Greek origin that
means "beside," "with," or "alongside.” Given the
meaning “alongside virtualization,”
paravirtualization refers to communication
between the guest OS and the hypervisor to
improve performance and efficiency.
Paravirtualization, as shown in Figure 6, involves
modifying the OS kernel to replace non-
virtualizable instructions with hypercalls that
communicate directly with the virtualization layer
hypervisor. The hypervisor also provides hypercall
interfaces for other critical kernel operations such

as memory management, interrupt handling and
time keeping.

Paravirtualization is different from full
virtualization, where the unmodified OS does not know it is virtualized and sensitive OS calls are
trapped using binary translation. The value proposition of paravirtualization is in lower
virtualization overhead, but the performance advantage of paravirtualization over full
virtualization can vary greatly depending on the workload. As paravirtualization cannot support
unmodified operating systems (e.g. Windows 2000/XP), its compatibility and portability is poor.
Paravirtualization can also introduce significant support and maintainability issues in production
environments as it requires deep OS kernel modifications. The open source Xen project is an
example of paravirtualization that virtualizes the processor and memory using a modified Linux
kernel and virtualizes the I/O using custom guest OS device drivers.

While it is very difficult to build the more sophisticated binary translation support necessary for
full virtualization, modifying the guest OS to enable paravirtualization is relatively easy. VMware
has used certain aspects of paravirtualization techniques across the VMware product line for years
in the form of VMware tools and optimized virtual device drivers. The VMware tools service
provides a backdoor to the VMM Hypervisor used for services such as time synchronization,
logging and guest shutdown. Vmxnet is a paravirtualized I/O device driver that shares data
structures with the hypervisor. It can take advantage of host device capabilities to offer improved
throughput and reduced CPU utilization. It is important to note for clarity that the VMware tools
service and the vmxnet device driver are not CPU paravirtualization solutions. They are minimal,
non-intrusive changes installed into the guest OS that do not require OS kernel modification.
Looking forward, VMware is helping develop paravirtualized versions of Linux to support proofs of
concept and product development. Further information is provided later in this paper on page 11.

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Hardware virtualization
Hardware-assisted virtualization

■The CPU supports virtualization with special
features

■New root mode below ring 0 for the

hypervisor

■Virtualized Memory Management Unit (MMU)

■Virtualized I/O on PCI Express

■ ...

■No need for binary translation or para-
virtualized OS

■Best performance

16

VMware Understanding Full Virtualization, Paravirtualization, and Hardware Assist

Memory Virtualization 6

Figure 7 – The hardware assist approach to x86
virtualization

Technique 3 – Hardware Assisted Virtualization
Hardware vendors are rapidly embracing
virtualization and developing new features
to simplify virtualization techniques. First
generation enhancements include Intel
Virtualization Technology (VT-x) and AMD’s
AMD-V which both target privileged
instructions with a new CPU execution
mode feature that allows the VMM to run
in a new root mode below ring 0. As
depicted in Figure 7, privileged and
sensitive calls are set to automatically trap
to the hypervisor, removing the need for
either binary translation or

paravirtualization. The guest state is stored in
Virtual Machine Control Structures (VT-x) or
Virtual Machine Control Blocks (AMD-V).
Processors with Intel VT and AMD-V became available in 2006, so only newer systems contain
these hardware assist features.

Due to high hypervisor to guest transition overhead and a rigid programming model, VMware’s
binary translation approach currently outperforms first generation hardware assist
implementations in most circumstances. The rigid programming model in the first generation
implementation leaves little room for software flexibility in managing either the frequency or the
cost of hypervisor to guest transitions1. Because of this, VMware only takes advantage of these
first generation hardware features in limited cases such as for 64-bit guest support on Intel
processors.

Memory Virtualization
Beyond CPU virtualization, the next critical component is memory virtualization. This involves
sharing the physical system memory and dynamically allocating it to virtual machines. Virtual
machine memory virtualization is very similar to the virtual memory support provided by modern
operating systems. Applications see a contiguous address space that is not necessarily tied to the
underlying physical memory in the system. The operating system keeps mappings of virtual page
numbers to physical page numbers stored in page tables. All modern x86 CPUs include a memory
management unit (MMU) and a translation lookaside buffer (TLB) to optimize virtual memory
performance.

1 For more information, see “A Comparison of Software and Hardware Techniques for x86 Virtualization” by Adams and Agesen
presented at ASPLOS 2006

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Virtual environments for development
Introduction

■Anne is a web developer.
The code she develops
will run on a server with
the Linux operating
system and several
pieces of middleware:
Apache, MySQL and
PHP (LAMP stack). But
her development
workstation has a
different operating
system: Mac OS X.

■ To recreate the exact

environment in which
her application will run,
Anne creates a virtual
machine that runs Linux
and she installs Apache,
MySQL and PHP.

17

CPU memory network
adapter

hard disk

Hardware

Operating
System

App
1

App
2

App
3

Virtual machine 1

Hypervisor

Operating
System

App
1

Virtual machine 2

App
2

App
3

Operating System

Application 1 Application 2

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Virtual environments for development
Set-up

■The set-up of a virtual environment for development usually involves the following steps:

■Download a VM image that contains the desired operating system

■Create a new VM, start the VM and log into the VM

■ Install any additional middleware to re-create the server environment

■Configure networking

■ See following slides

■Configure file sharing between host and guest

■ Developer wants to use editors and IDEs on host to modify files on guest

18

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Virtual networks
Introduction

19

Host (Workstation)

loeth0

loeth0

App

Guest VM1

loeth0

App

Guest VM2

loeth0

App

Guest VM3App

App

App

Intranet Router
DHCP

Workstation

loeth0

App

App

App

Intranet Router
DHCP

"Outside
world"

Without virtualization With virtualization

"Outside
world"

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Virtual networks
Requirements

■Depending on the requirements, set-up of networking can become complex. There are
essentially four cases to consider:

■ (A) The guest VM needs to access the outside world

■ E.g., to download operating system updates

■ (B) The host needs to access the guest VM

■ Developer wants to log into the guest VM via SSH

■ Developer wants to test the software running in the guest VM

■ (C) The outside world needs to access the guest VM

■ Developer wants to test the software running in the guest VM using tools running on other hosts

■ (D) A guest VM needs to access another guest VM

■ E.g., several components of a distributed system are re-created in guest VMs

■ In most cases one wants to avoid interacting with the IT department to obtain additional IP
addresses, changes to the routing table, etc.

20

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Virtual networks
VirtualBox NAT

21

Host (Workstation)

Intranet

lo

lo

Router
DHCP

NAT is the default mode for new guest VMs.
Each guest VM thinks it is on their own isolated network. On this network it sees
a DHCP server which gives it an IP address.
Each VM is assigned the same IP address (10.0.2.15).
When a guest VM makes a connection to a server in the outside world it passes
through a NAT that rewrites the packets to make them appear as though they
originated from the host workstation, rather than the guest VM.
⊕ Guest VMs can access servers in the outside world
⊕ When the host workstation connects to another network, nothing needs to be
reconfigured
⊖ The outside world cannot (directly) access servers in the guest VMs
⊖ The guest VMs cannot talk to each other

Source: Fat Bloke, "Networking in VirtualBox", https://blogs.oracle.com/fatbloke/entry/networking_in_virtualbox1

Guest VM1

10.0.2.15
eth0 lo

App

Guest VM2

10.0.2.15
eth0 lo

App

Guest VM3

10.0.2.15
eth0

App

VBox
NAT /
DHCP

129.1.1.2
eth0

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Host (Workstation)

Intranet

lo

lo

Router
DHCP

.

Guest VM1

10.0.2.15
eth0 lo

App

Guest VM2

10.0.2.15
eth0 lo

App

Guest VM3

10.0.2.15
eth0

App

VBox
NAT /
DHCP

129.1.1.2
eth0"Outside

world"
Forwarding

process

port 22

port 2222

Virtual networks
VirtualBox NAT with port forwarding

22

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Virtual networks
VirtualBox Bridged Adapter

23

Host (Workstation)

129.1.1.2
eth0

Guest VM1

129.1.1.3
eth0 lo

App

Guest VM2

129.1.1.4
eth0 lo

App

Guest VM3

129.1.1.5
eth0 lo

App

lo

Intranet Router
DHCP

In bridged mode, the virtual NIC of a VM guest is bridged with the physical NIC on the
host workstation. The effect of this is that each guest VM has access to the physical
network the same way as the host workstation. It can access any service on the network
such as DHCP, name lookup and routing information.
⊕ Guest VMs access the outside world exactly like the host workstation
⊕ The outside world sees the guest VMs as directly connected to the network
⊖ The network may quickly run out of IP addresses
⊖ The bridge needs to be reconfigured each time the host workstation jumps networks

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Virtual networks
VirtualBox Internal Network

24

Host (Workstation)

129.1.1.2
eth0

Guest VM1

10.0.2.1
eth0 lo

App

Guest VM2

10.0.2.2
eth0 lo

App

Guest VM3

10.0.2.3
eth0 lo

App

lo

Intranet Router
DHCP

The guest VMs are connected to an internal network that is completely isolated. It is
possible to create complex internal networks with VMs that provide their own services to
the internal network (e.g., Active Directory, DHCP, etc.). Note that not even the host
workstation is member of the internal network.
⊕ Guest VMs can talk to each other
⊕ Guest VMs function even when the host workstation is not connected to any network
(e.g. on a plane)
⊖ Host workstation cannot see guest VMs
⊖ Outside world cannot see guest VMs

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Virtual networks

VirtualBox Host-only Adapter

25

Host (Workstation)

129.1.1.2
eth0

Guest VM1

192.168.56.101
eth0 lo

App

Guest VM2

192.168.56.102
eth0 lo

App

Guest VM3

192.168.56.103
eth0 lo

App

lo

Intranet Router
DHCP

Host-only networking is like Internal Networking, but the host workstation is connected to
the internal network as well.
⊕ Guest VMs can talk to each other
⊕ Guest VMs function even when the host workstation is not connected to any network
(e.g. on a plane)
⊕ Host workstation can talk to guest VMs
⊖ Outside world cannot see guest VMs

192.168.56.1
vboxnet0

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Virtual networks

VMware Internet Sharing (NAT)

26

Host (Workstation)
Guest VM1

192.168.246.168
eth0 lo

App

Guest VM2

192.168.246.169
eth0 lo

App

Guest VM3

192.168.246.170
eth0 lo

App

lo

Intranet Router
DHCP

Internet Sharing (NAT) is the default mode for new guest VMs.

192.168.246.1
vmnet8

NAT
192.168.246.2129.1.1.2

eth0

default gateway

Source: VMware, https://www.vmware.com/support/ws45/doc/network_nat_details_ws.html

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Vagrant

Introduction

■Vagrant is software that creates and configures
virtual development environments

■ It is a layer on top of VirtualBox or VMware

■ It automates a lot of the manual steps a

developer has to go through to set up a
development VM

■Released as Open Source (MIT) license, with
some extensions being proprietary

■Developed by Mitchell Hashimoto (HashiCorp)

■ Initially released March 2010

■Runs on Linux, FreeBSD, OS X and Microsoft

Windows

27

Vagrant term Common term

Box Virtual machine image

Machine Virtual machine

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Vagrant

VM images

■Vagrant creates VMs from VM images that contain the operating system and possibly additional
software

■VM images in Vagrant are called boxes

■Vagrant offers a repository of pre-configured VM images

■Base operating system: Ubuntu, RedHat, CenOS, SUSE, …

■Base operating system + middleware: Linux + Apache + MySQL + PHP, …

■User can create his own images

28

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Vagrant

Project directory

■Vagrant makes it easy to deploy code produced in a project in a virtual environment.

■Suppose you have a project directory that contains code that should run a virtual environment.

■You create a VM dedicated to run that code:

■ In the project directory run vagrant init. This creates a new file called Vagrantfile. Edit the file
to

■ Select the image to use for initializing the VM

■ Expose any VM ports on the host machine

■ …

■Run vagrant up to start the VM.

■ To log into the VM run vagrant ssh
■Vagrant automatically sets up file sharing between host and guest: The project directory is accessible

inside the VM at the mount point /vagrant.

■ If necessary install and configure additional software in the virtual environment and run the code

directly from the /vagrant directory or use any other code deployment mechanism.

29

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Vagrant

Lifecycle of boxes and machines

30

Box lifecycle

Machine lifecycle

box add

Box

box remove

box update

Stopped
destroy

halt up

Running

reload

up

Suspen-
ded

resumesuspend

destroy

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Vagrant

Networking

■Vagrant offers the following networking options:

■Port forwarding

■Private network

■Public network

■ Meaning depends on virtualization provider (VirtualBox, VMware)

31

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Software containers
Introduction

■Virtualization is popular because of its isolation abilities: software
isolation, fault isolation and performance isolation.

■A different approach to isolation is provided by software

containers.

■A software container:

■Uses virtualization features of the operating system

■ Is much lighter weight than hardware virtualization: no separate

operating system needed

■Used by Google internally since many years

■Popularized by Docker, released in 2013

32

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Software containers

Linux containers

■What is a Linux container?

■A combination of Linux technologies

■ namespaces

■ cgroups

■ normal Linux networking

■ normal Linux security mechanisms

■which allow you to run userspace programs in the container which will have the illusion that they are
alone on the machine.

33

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Software containers
Linux containers

■ Linux containers allow to run processes in an isolated environment via namespaces.

■UTS: Allows a different hostname for each container

■PID: Hides processes outside the namespace from processes in the namespace. Calling shutdown()

will perform a shutdown on the processes only in that namespace.

■MOUNT: Allows a group of processes to mount and unmount filesystems and not have these changes

visible outside of the namespace.

■UID:	Allows you to give processes root inside the namespace but have this mapped to a normal user

when interacting with processes outside the namespace (eg accessing files).

■ 	IPC: Allows you to have a separate space for IPC resources such as semaphores and locks.

■ 	NET: Allows processes to have their own networking stack with different interfaces, firewalls and

routing tables.

■ 	SYSLOG: Only see ksyslog messages that belong to the namespace you are in (eg. dmesg).

■ 	AUDIT: Allows a namespace to only see messages from the audit subsystem that apply to that

namespace.

■ 	CGROUP: Allows a namespacing of cgroups giving you your own separate hierarchy.

34

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Software containers

Example for isolation: chroot

■On Unix operating systems a chroot is an operation that changes the apparent root directory for
the current running process and its children to a subtree of the file hierarchy. A program run in a
chroot environment cannot access files outside the subtree.

35

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Software containers

Union file system

■UnionFS is a filesystem that
implements a union mount for other
file systems.

■A union mount transparently overlays

several filesystems (layers) to form a
single coherent virtual file system.

■When mounting layers, the priority of

one layer over the other is specified.
So when both layers contain a file with
the same name, one gets priority over
the other.

■The different layers may be read-only

or read-write FSs. Writes to the virtual
FS are directed to a specific real FS.

36

Layer 3Layer 2Layer 1

Layer 1
Layer 2

Layer 3

un
ion

ing

bin

/

var

tmp

/

apache

usr

/

etc

apache.conf

apache

Union(Layer 1, Layer 2, Layer 3)

bin

/

etc

apache.conf

apache

var

tmp

apache

usr

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Docker

Containers and container images

■Containers are created from
container images.

37

Read-only layer
Read-only layer

Read-only layer

un
ion

ing

Read-only layer
Read-only layer

Read-only layer
Read-write layer

un
ion

ing

Container image: Union
view of several layers of
read-only filesystems

Container: Union view of
a read-write filesystem on
top of several layers of
read-only filesystems

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Software containers

Containers vs Virtual Machines

38

Guest OS

Libs A

Virtual machine 1

Hypervisor

Host OS

Hardware

App X

Guest OS

Libs B

Virtual machine 2

App Y

Guest OS

Libs B

Virtual machine 3

App Z

Three VMs running on a single host

Container Engine

Host OS

Hardware

Three containers running on a single host

Libs A

Container 1

App X

Container 2 Container 3

Libs B

App Y App Z

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Software containers

Containers vs Virtual Machines

■ Virtualization:

■ The Hypervisor creates Virtual Machines, controls access to the host OS and hardware and interprets

privileged instructions if necessary.

■ Each VM requires a full copy of the operating system, the application being run, and any supporting

libraries.

■ Software Containers:

■ The host’s kernel is shared with the running containers.

■ This means that containers are always constrained to running the same kernel as the host.

■Applications that use the same libraries can share them instead of having redundant copies.

■Processes inside containers are equivalent to processes on the host and do not incur the overheads

associated with hardware virtualization.

39

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Docker

Lifecycle of container images and containers

40

Image lifecycle

Container lifecycle

Running

restart

Image stop/kill start

rmi

build from Dockerfile /
import from tarball /
commit from container

Stopped

run

create

rm

Suspen-
ded

unpausepause

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Docker

Naming containers

■By default Docker assigns to each container a
unique machine-readable Container ID like
e674bd4a377e

■Additionally it generates by default a unique

human-readable (nonsensical) name like
evil_ptolemy

■The user can override the human-readable

name by using the --name option when
creating the container. It must be unique.

41

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
e674bd4a377e heigvd/ha "bash" 7 days ago Up 7 days 0.0.0.0:80->80/tcp loadbalancer
c845c95bfb48 heigvd/webapp "./run.sh" 5 weeks ago Up 7 days 3000/tcp node1
3fb984306e36 heigvd/webapp "./run.sh" 5 weeks ago Up 7 days 3000/tcp node2

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Docker

Default network configuration

■By default Docker configures networking as follows:

■ It creates a private virtual subnet that is not in use (often it is 172.17.0.0/16).

■On the host it creates a virtual interface named docker0 connected to this subnet and assigns it an

IP address (often it is 172.17.42.1).

■On each container it creates a virtual interface named eth0 connected to this subnet and assigns it

an IP address (often the first container receives 172.17.0.1, the second 172.17.0.2, and so on).

■ It creates a NAT between the private subnet and the subnet to which the host is connected so that

containers can establish connections to the outside world.

■ In summary this enables that

■ (A) The containers are able to access the outside world

■ (B) The host is able to access the containers

■ (D) A container is able to access another container

■ and disallows that

■ (C) The outside world is able to access a container

42

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Docker

Default network configuration

43

Host (Workstation)
Container 1

172.17.0.1
eth0 lo

App

Container 2

172.17.0.2
eth0 lo

App

Container 3

172.17.0.3
eth0 lo

App

lo

Intranet Router
DHCP

"Outside
world"

129.1.1.2
eth0

172.17.42.1
docker0

NAT

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Host (Workstation)
Container 1

eth0 lo

App

Container 2

172.17.0.2
eth0 lo

App

Container 3

172.17.0.3
eth0 lo

App

lo

Intranet Router
DHCP

"Outside
world" eth0 docker0

NAT

port 8080 port 80

Application in container 1 listens on port 80. Container 1 exposes port 80 via EXPOSE
directive in Dockerfile.

Option -p=8080:80 in run command publishes the port on the host as port 8080.

Docker

Default network configuration with published exposed ports

44

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Docker

Network configuration information

■By default Docker automatically
sets up the following configuration
files in each container:

■ /etc/hostname

■ /etc/hosts

■ /etc/resolv.conf

45

e674bd4a377e

File /etc/hostname:

172.17.0.3 e674bd4a377e
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.17.0.3 loadbalancer

File /etc/hosts:

nameserver 10.0.2.3

File /etc/resolv.conf:

Container ID

Container name

Nameserver of the host

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Docker

Network configuration information — Linking

■When a container B is created with a
link to an existing container A, Docker
conveniently provides in B’s /etc/hosts
file the IP address of A.

46

[...]
172.17.0.2 s1 3fb984306e36

File /etc/hosts in B:

Container ID of AContainer name of A

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Software Containers and Docker

History

■ 1979 Unix gets chroot command: file
system isolation

■ 1998 BSD gets jail utility: chroot

sandboxing extended to processes

■ 2001 Solaris gets Zones technology: pretty

complete containerization, but limited to
Solaris

■ 2001 Parallels develops Virtuozzo container

technology for Linux, open sources it in
2005 as OpenVZ

■ 2005 Google starts development of CGroups

for Linux and begins moving its
infrastructure to containers

■ 2008 Linux Containers (LXC) project started:

complete containerization solution

■2008 dotCloud, a startup, develops a
language-agnostic Platform-as-a-Service
offering. Core building block is Docker,
initially a wrapper around LXC.

■2013-03 dotCloud open sources Docker.

Within six months, it has more than 6’700
stars and on GitHub and 175 new
contributors.

■2013-09 RedHat becomes a major partner

and starts using Docker for its OpenShift
PaaS offering.

■2013-10 dotCloud renames itself to Docker.

■2014-06 Release of Docker 1.0

■2014-10 Microsoft announces that Windows

Server will support Docker.

47

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

Software Containers and Docker

History

■ 2014-11 Amazon launches beta of Amazon
EC2 Container Service: Docker support on
Amazon's cloud. General Availability
2015-04

■ 2014-12 CoreOS announces development of

rkt, its own container runtime.

■ 2015-06 Announcement of the Open

Container Initiative: common standard for
container formats and runtimes

■ 2015-06 FreeBSD project announces Docker

is supported on FreeBSD, using ZFS and the
Linux compatibility layer

■ 2015-08 General Availability of Google

Container Engine: Docker support on
Google’s cloud

■ 2015-09 IBM offers IBM Containers: Docker

support on IBM’s cloud

48

HEIG-VD | TIC – Technologies de l’Information et de la Communication

Administration IT | Virtualization | Academic year 2015/16 (C) 2015 Marcel Graf

References

49

Adrian Mouat

Using Docker

2015-12

O'Reilly Media

Sébastien Goasguen

Docker Cookbook

2015-11

O’Reilly Media

Karl Matthias, Sean P. Kane

Docker: Up & Running

2015-06

O’Reilly Media

